Geant4 simulation for the MuCool Test Area (MTA)

Ivan Orlov

Lomonosov Moscow State University

Supervisors: Alan Bross, Yagmur Torun

August 24, 2011

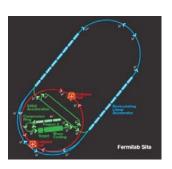
Introduction

Global goal

To build a Muon Collider

Parts of the collider complex:

- Project X
- Muon Cooling
- Detectors at collision halls
- ...


Introduction

Global goal

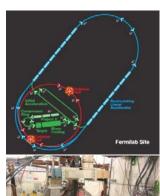
To build a Muon Collider

Parts of the collider complex:

Muon Cooling

Introduction

Global goal

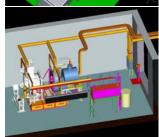

To build a Muon Collider

Parts of the collider complex:

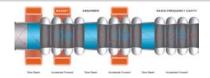
Muon Cooling

Muon Cooling

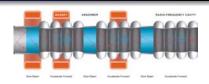
MuCool Test Area



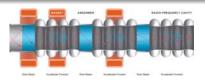
MuCool Test Area

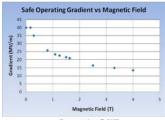

Dedicated facility for muon ionization cooling component R&D

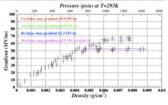
- Surface building with cryogenic plant
- Underground experimental hall
- 201 and 805-MHz RF power
- Superconducting solenoid magnet
- 400-MeV H- beamline (from Linac)
- Radiation detectors



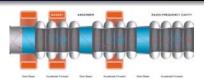
 Ionization cooling requires RF cavities operating in strong external magnetic fields


 Ionization cooling requires RF cavities operating in strong external magnetic fields

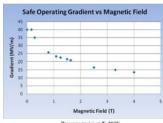

Poor performance of vacuum cavities in B field

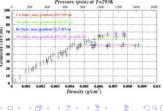


 Ionization cooling requires RF cavities operating in strong external magnetic fields

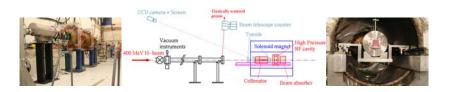


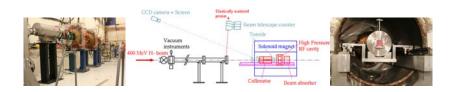
- Poor performance of vacuum cavities in B field
- High pressure GH2-filled RF (HPRF) cavities not affected by magnetic field (past MTA experiments)



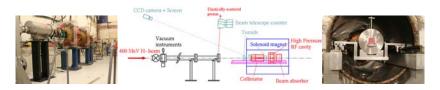


 Ionization cooling requires RF cavities operating in strong external magnetic fields

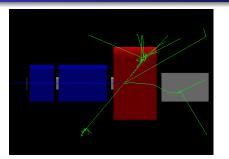

- Poor performance of vacuum cavities in B field
- High pressure GH2-filled RF (HPRF) cavities not affected by magnetic field (past MTA experiments)
- but response of HPRF to intense beam was unknown beam induced plasma expected to load cavity
- experiment at MTA built to test cavity in beam performed Jul–Aug 2011

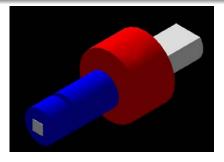

Project Goals

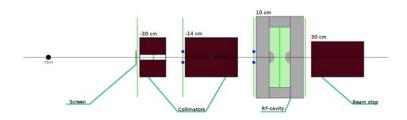
- Build GEANT4 model of MTA experimental setup
 - Beam, solenoid, collimators, HPRF cavity, beam absorber


Project Goals

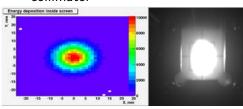
- Build GEANT4 model of MTA experimental setup
 - Beam, solenoid, collimators, HPRF cavity, beam absorber
- including diagnostics
 - toroids, phosphor screen

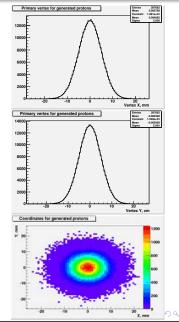



Project Goals

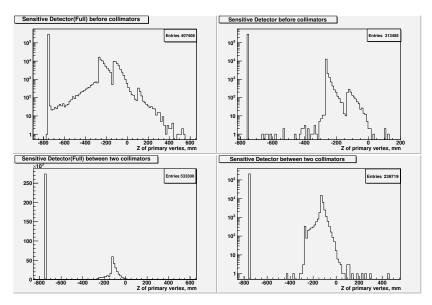

- Build GEANT4 model of MTA experimental setup
 - Beam, solenoid, collimators, HPRF cavity, beam absorber
- including diagnostics
 - toroids, phosphor screen
- Study several aspects of HPRF cavity beam test
 - Beam transmission through collimators
 - Measured current vs number of beam particles through toroids
 - Beam profile on screen

Geometry of the simulation

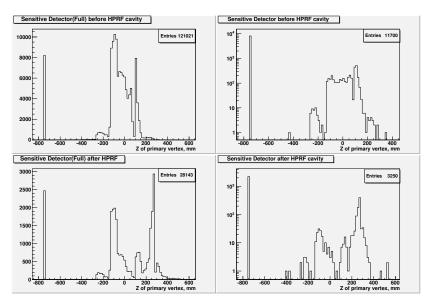




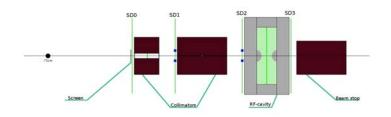
Beam parameters


Parameters of generated beam:

- Beam consists of protons
- $\sigma_{x} = 5$ mm, $\sigma_{y} = 5$ mm
- Kinetic Energy = 400 MeV
- Beam is parallel to Z-axis
- There is a screen to monitor the beam profile before the first collimator



Particle position at birth



Particle position at birth

Particle current through Sensitive detector

SD	Proton current	Total current	TC/PC	Transmission
SD0	297682	292679	0.9832	0.9923
SD1	273792	272834	0.9965	0.9126
SD2	8194	8112	0.99	0.0273
SD3	2471	2252	0.9114	0.0082

Summary

- ✓ HPRF beam test geometry modeled in GEANT4
- ✓ Beam profile on screen
- √ Transmission through collimators
- ✓ Current through toroids
 - Future work: vary beam parameters, add detailed low energy physics, energy deposition in Cavity body and gas